等差數(shù)列{an}中,Sn是其前n項(xiàng)和,a1=-2013,
S10
10
-
S8
8
=2
,則S2013=( 。
分析:設(shè)等差數(shù)列{an}的公差為d,由已知的式子結(jié)合求和公式可得d=2,代入公式可求得答案.
解答:解:設(shè)等差數(shù)列{an}的公差為d,
由等差數(shù)列的前n項(xiàng)和公式可得:Sn=na1+
n(n-1)
2
d

S10
10
-
S8
8
=a1+
9
2
d-a1-
7
2
d
=2,解得d=2
故S2013=-2013×2013+2013×2012=-2013
故選D
點(diǎn)評(píng):本題考查等差數(shù)列的求和問題,熟練掌握公式是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案