已知函數(shù)y=f(x)的反函數(shù)為y=f-1(x),定義:若對(duì)給定的實(shí)數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”.
(1)判斷函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]是否滿足“1和性質(zhì)”,并說明理由;
(2)若F(x)=kx+b,其中k≠0,x∈R滿足“2和性質(zhì)”,則是否存在實(shí)數(shù)a,使得F(9)<F(cos2θ+asinθ)<F(1)對(duì)任意的θ∈(0,π)恒成立?若存在,求出a的范圍;若不存在,請(qǐng)說明理由.
【答案】分析:(1)函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]的反函數(shù)是g-1(x)=--1,x∈[1,2],所以g-1(x+1)=--1,x∈[0,1],由此能夠判斷函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]不滿足“1和性質(zhì)”.
(2)設(shè)函數(shù)F(x)=kx+b滿足“2和性質(zhì)”,k≠0.所以F-1(x)=,x∈R,F(xiàn)-1(x+2)=,而F(x+2)=k(x+2)+b,x∈R,得反函數(shù)y=.由此入手能導(dǎo)出當(dāng)1<a<9使得F(cos2θ+asinθ)<3對(duì)任意的θ∈(0,π)恒成立.
解答:解:(1)函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]的反函數(shù)是g-1(x)=--1,x∈[1,2]
∴g-1(x+1)=--1,x∈[0,1]
而g(x+1)=(x+2)2+1,x∈[-3,-2]
其反函數(shù)為y=-2-,x∈[1,2],
故函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]不滿足“1和性質(zhì)”;(6分)
(2)設(shè)函數(shù)F(x)=kx+b滿足“2和性質(zhì)”,k≠0.
∴F-1(x)=,x∈R,
F-1(x+2)=,
而F(x+2)=k(x+2)+b,x∈R,
得反函數(shù)y=
由“2和性質(zhì)”定義可知=對(duì)x∈R恒成立,
∴k=-1,b∈R,
即函數(shù)F(x)=-x+b,x∈R,在(-∞,+∞)上遞減,…(9分)
所以假設(shè)存在實(shí)數(shù)a滿足F(9)<F(cos2θ+asinθ)<F(1),
即1<cos2θ+asinθ<9對(duì)任意的θ∈(0,π)恒成立,
它等價(jià)于在t∈(0,1]上恒成立.
t2-at+8>0,t∈(0,1]?a<t+,
易得a<9.而t2-at<0知a>t所以a>1.
綜合以上有當(dāng)1<a<9使得F(cos2θ+asinθ)<3對(duì)任意的θ∈(0,π)恒成立(13分)
點(diǎn)評(píng):本題考查解函數(shù)在生產(chǎn)實(shí)際中的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,容易出錯(cuò).本題型是高考的重點(diǎn),解題時(shí)認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(diǎn)(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對(duì)稱圖形一定過點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x(1-x),那么當(dāng)x>0時(shí),f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案