橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率是
1
2
,則
b2+1
3a
的最小值為( 。
A.
3
3
B.1C.
2
3
3
D.2
由題意可得,
c
a
=
1
2

即c=
1
2
a
∴b2=a2-c2=
3a2
4

b2+1
3a
=
3a2
4
+1
3a
=
a
4
+
1
3a
≥2
a
4
1
3a
=
3
3

當且僅當
a
4
=
1
3a
即a=
3
2
時取等號
b2+1
3a
的最小值為
3
3

故選A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)點P是橢圓
x2
49
+
y2
24
=1
上一動點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,若|PF1|=6,則|OP|長為( 。
A.5B.10C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F橢圓與過原點的直線交于A,B兩點,連接AF,BF,若|AB|=26,|BF|=10,cos∠ABF=
5
13
,則橢圓的離心率為( 。
A.
5
13
B.
5
7
C.
13
17
D.
6
17

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
m
=1
的離心率e∈[
2
2
,1)
,則m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,過F2的直線l與橢圓C相交于A,B兩點,直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2
3

(Ⅰ)求橢圓C的焦距;
(Ⅱ)如果
AF2
=2
F2B
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓
x2
16
+
y2
12
=1
上一點P到焦點F1的距離等于3,那么點P到另一焦點F2的距離等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1
上到點A(0,b)距離最遠的點是B(0,-b),則橢圓的離心率的取值范圍為( 。
A.(0,
6
3
]
B.[
6
3
,1)
C.(0,
2
2
]
D.[
2
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓4x2+y2=4的準線方程是(  )
A.y=±
4
3
3
x
B.x=±
4
3
3
y
C.y=±
4
3
3
D.x=
+-
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,左、右焦點分別為F1、F2,點P的坐標為(2,
3
),且F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果圓E:(x-
1
2
2+y2=r2被橢圓C所覆蓋,求圓的半徑r的最大值.

查看答案和解析>>

同步練習冊答案