20.$\overrightarrow{a}$與 $\overrightarrow$的長都為2,且$\overrightarrow{a}⊥(\overrightarrow-\overrightarrow{a}$),則$\overrightarrow{a}$?$\overrightarrow$=4.

分析 通過向量垂直,然后求解向量的數(shù)量積即可.

解答 解:$\overrightarrow{a}$與 $\overrightarrow$的長都為2,且$\overrightarrow{a}⊥(\overrightarrow-\overrightarrow{a}$),
可得$\overrightarrow{a}•(\overrightarrow-\overrightarrow{a})$=$\overrightarrow{a}•\overrightarrow-{\overrightarrow{a}}^{2}$=0,
可得$\overrightarrow{a}•\overrightarrow$=4.
故答案為:4.

點評 本題考查平面向量的數(shù)量積以及向量的垂直關系的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若二次函數(shù)g(x)滿足g(1)=1,g(-1)=5,且圖象過原點,則g(x)的解析式為( 。
A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),兩焦點F1(-1,0)、F2(1,0),點$P(\sqrt{3},\frac{{\sqrt{3}}}{2})$在橢圓C上.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M、N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設f(x)=x3-$\frac{1}{2}{x^2}$-2x+6,當x∈[-1,2]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線的標準方程為$\frac{x^2}{3}-{y^2}=1$,直線l:y=kx+m(k≠0,m≠0)與雙曲線交于不同的兩點C、D,若C、D兩點在以點A(0,-1)為圓心的同一個圓上,則實數(shù)m的取值范圍是( 。
A.$\{m|-\frac{1}{4}<m<0\}$B.{m|m>4}C.{m|0<m<4}D.$\{m|-\frac{1}{4}<m<0或m>4\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知圓柱的底面半徑為r,高為h,體積為 2,表面積為24,則$\frac{1}{r}$+$\frac{1}{h}$=(  )
A.24B.12C.8D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)如果$cos(π-x)=\frac{{\sqrt{3}}}{2}$,x∈(0,π],求x的值
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.某幾何體的三視圖如圖所示,則它的表面積是7+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若正項等比數(shù)列{an}滿足a1-a3=-3,a1-a4=-7,則a5=16.

查看答案和解析>>

同步練習冊答案