已知a>0,命題p:x∈R,|x-4|+|x-3|<a為真命題,求a的取值范圍.

答案:
解析:

  解:p:x∈R,|x-4|+|x-3|≥a,

  ∵x∈R,|x-4|+|x-3|的最小值為1,

  ∴p時(shí),0<a<1.

  又∵p是真命題,∴p為假命題.∴a>1,即a的取值范圍是(1,+∞).


提示:

p與p的真假相反,故利用p求出a的范圍,從而求出p真時(shí),a的范圍.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,命題p:函數(shù)y=ax在R上單調(diào)遞減,q:設(shè)函數(shù)y=
2x-2a(x≥2a)
2a(x<2a)
,函數(shù)y>1恒成立,若p和q只有一個(gè)為真命題,則a的取值范圍
0<a≤
1
2
或a≥1
0<a≤
1
2
或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,命題p:?x>,x+
ax
≥2
 恒成立;命題q:“直線(xiàn)x+y-a=0與圓(x-1)2+y2=1有公共點(diǎn)”,若命題p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,命題p:?x>0,x+
a
x
≥2
恒成立;命題q:?k∈R直線(xiàn)kx-y+2=0與橢圓x2+
y2
a2
=1
有公共點(diǎn).是否存在正數(shù)a,使得p∧q為真命題,若存在,請(qǐng)求出a的范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,命題p:?x>0,x+
a
x
≥2恒成立;命題q:?k∈R,直線(xiàn)kx-y+2=0與橢圓x2+
y2
a2
=1恒有公共點(diǎn).問(wèn):是否存在正實(shí)數(shù)a,使得p∨q為真命題,p∧q為假命題?若存在,請(qǐng)求出a的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:不等式x+|x-2a|>1的解集為R,若p和q中有且只有一個(gè)命題為真命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案