某廠生產(chǎn)一種機(jī)器的固定成本(即固定投入)0.5萬元,但每生產(chǎn)100臺,需加可變成本(即另增中投入)0.25萬元,市場對此產(chǎn)品的年需求量為500臺,銷售收入為(萬元)(0t5),其中t是產(chǎn)品售出數(shù)量(單位:百臺)

(1)把年純利潤表示為年產(chǎn)量x(xÎ [0,+¥ ),單位:百臺)函數(shù);

(2)年產(chǎn)量為多少時,工廠所得純利潤最大?(純利潤=銷售收入-成本)

答案:略
解析:

(1)當(dāng)0x5時,純利潤

y=f(x)0.25x0.5

當(dāng)x5時,y=f(5)0.50.25x=120.25x

(2)當(dāng)0x5時,

∴當(dāng)x=4.75時,

y的最大值為10.78125(萬元)

當(dāng)x5時,

y120.25×5=10.75(萬元)

∴年產(chǎn)量為475臺時,工廠的純利潤最大.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)應(yīng)用題:某廠生產(chǎn)一種機(jī)器的固定成本(即固定投入)為0.5萬元,但是每生產(chǎn)100臺需要加可變成本(另增加投入)0.25萬元,市場對此產(chǎn)品的年需求量為500臺.銷售收入(單位:萬元)的函數(shù)為F(x)=5x-
12
x2
(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺).
(1)寫出利潤G(x)表示為年產(chǎn)量的函數(shù)關(guān)系式.
(2)年產(chǎn)量為多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)一種機(jī)器的固定成本(即固定收入)為0.5萬元,但每生產(chǎn)一臺,需要增加可變成本(即另增加收入)0.25萬元.市場對此產(chǎn)品的年需求量為500臺,銷售的收入函數(shù)為R(x)=5x-
x22
(萬元)(0≤x≤5).其中x是產(chǎn)品售出的數(shù)量(單位:百臺)
(1)把利潤表示為年產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)一種機(jī)器的固定成本為0.5萬元,但每生產(chǎn)1百臺,需增加投入 0.25萬元.市場對此產(chǎn)品的年需求量為5百臺(即產(chǎn)量多于5百臺時,由于市場需求只能售出5百臺,但一直要照常增加投入成本).則當(dāng)售出x百臺時,收入(萬元)為x的函數(shù):R(x)=5x-
x22
,0≤x≤5.請解答:
(1)分別寫出成本函數(shù)C(x);
(2)把利潤表示為年產(chǎn)量的和函數(shù)L(x);
(3)年產(chǎn)量是多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)一種機(jī)器的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)100臺,需要加可變成本(即另增加投入)0.25萬元.市場對此產(chǎn)品的年需求量為500臺,銷售的收入函數(shù)為R(x)=5x(萬元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺).

(1)把利潤表示為年產(chǎn)量的函數(shù);

(2)年產(chǎn)量是多少時,工廠所得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年云南省高中學(xué)業(yè)水平考試增分測試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

函數(shù)應(yīng)用題:某廠生產(chǎn)一種機(jī)器的固定成本(即固定投入)為0.5萬元,但是每生產(chǎn)100臺需要加可變成本(另增加投入)0.25萬元,市場對此產(chǎn)品的年需求量為500臺.銷售收入(單位:萬元)的函數(shù)為(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺).
(1)寫出利潤G(x)表示為年產(chǎn)量的函數(shù)關(guān)系式.
(2)年產(chǎn)量為多少時,工廠所得利潤最大?

查看答案和解析>>

同步練習(xí)冊答案