分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式即可得出直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入方程y2=4x可得:3t2-8t-32=0.|PA|•|PB|=|t1t2|.
解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程:$\sqrt{3}$x+y-2$\sqrt{3}$=0.
曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐標(biāo)方程:y2=4x.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入方程y2=4x可得:3t2-8t-32=0.
∴t1t2=-$\frac{32}{3}$.
∴|PA|•|PB|=|t1t2|=$\frac{32}{3}$.
點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與拋物線相交弦長(zhǎng)問(wèn)題,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24種 | B. | 48種 | C. | 64種 | D. | 81種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 12 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com