閱讀下面材料:

根據(jù)兩角和與差的正弦公式,有

------①

------②

由①+② 得------③

 有

代入③得

(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:

;

(Ⅱ)若的三個(gè)內(nèi)角滿足,試判斷的形狀.

 

【答案】

(1)根據(jù)兩角和差的余弦公式可以得到結(jié)論,

(2)為直角三角形

【解析】

試題分析:解:解法一:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image002.png">, ①

, ② 2分

①-② 得.       ③  3分

,

代入③得.             6分

(Ⅱ)由二倍角公式,可化為

,               8分

.                    9分

設(shè)的三個(gè)內(nèi)角A,B,C所對的邊分別為,

由正弦定理可得                    11分

根據(jù)勾股定理的逆定理知為直角三角形.              12分

解法二:(Ⅰ)同解法一.

(Ⅱ)利用(Ⅰ)中的結(jié)論和二倍角公式, 可化為

,            8分

因?yàn)锳,B,C為的內(nèi)角,所以,

所以.

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image016.png">,所以,

所以.

從而.                        10分

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080112000491562913/SYS201308011200378842577375_DA.files/image020.png">,所以,即.

所以為直角三角形.             12分

考點(diǎn):解三角形,兩角和差公式

點(diǎn)評:主要是考查了運(yùn)用兩角和差的公式推理論證表達(dá)式以及運(yùn)用二倍角公式來得到三角形定形,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(2)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ…①
sin(α-β)=sinαcosβ-cosαsinβ…②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ…③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=1-cos2C,試判斷△ABC的形狀.(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•福建模擬)閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇姜堰市高二第二學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面材料:

根據(jù)兩角和與差的正弦公式,有

------①

------②

由①+② 得------③

 有

代入③得 .

 (1) 類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:

;

 (2)若的三個(gè)內(nèi)角滿足,直接利用閱讀材料及(1)中的結(jié)論試判斷的形狀.

 

查看答案和解析>>

同步練習(xí)冊答案