函數(shù)f(x)=
lnx
x
在點(x0,f(x0))處的切線平行于x軸,則f(x0)等于( 。
A、-
1
e
B、
1
e
C、
1
e2
D、e2
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出原函數(shù)的導函數(shù),再由f′(x0)=0求得x0,則f(x0)可求.
解答: 解:由f(x)=
lnx
x
,得f(x)=
1-lnx
x2

f(x0)=
1-lnx0
x02
,
f(x0)=
1-lnx0
x02
=0,得x0=e.
∴f(x0)=
lne
e
=
1
e

故選:B.
點評:本題考查利用導數(shù)研究曲線上某點處的切線方程,過曲線上某點的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在4次獨立重復試驗中,隨機事件A恰好發(fā)生1次的概率不大于其恰好發(fā)生兩次的概率,則事件A在一次試驗中發(fā)生的概率p的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若x>1,則x2>2”的否定是( 。
A、?x>1,x2≤2
B、?x>1,x2>2
C、?x>1,x2≤2
D、?x≤1,x2>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在復數(shù)集上的函數(shù)f(z-i)=
.
z
1-z
,則f(i)=( 。
A、
1
2
-
1
2
i
B、
1
2
+
1
2
i
C、
4
5
-
2
5
i
D、-
4
5
+
2
5
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項和,如果a3+a6=2,a4a5=-8,且a3<a6,則
S6
S3
=( 。
A、1B、3C、-1D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題“p:x≥4或x≤0”,命題“q:x∈Z”,如果“p且q”與“非q”同時為假命題,則滿足條件的x為( 。
A、{x|x≥3或x≤-1,x∉Z}
B、{x|-1≤x≤3,x∉Z}
C、{-1,0,1,2,3}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,當a=3時,此程序輸出的結(jié)果是(  )
A、9B、3C、10D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[0,2]和[1,2]上分別取一個數(shù)x,y,則對應的數(shù)對(x,y)是不等式x-y≤0的解的概率為( 。
A、
1
2
B、
1
4
C、
3
4
D、
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3-ax在(-∞,1]上遞增,則a的范圍是( 。
A、a>3B、a≥3
C、a<3D、a≤3

查看答案和解析>>

同步練習冊答案