tan20°+tan40°+
3
tan20°•tan40°的值是(  )
A.
3
B.-
3
C.
3
3
D.-
3
3
tan20°+tan40°+
3
tan20°•tan40°
=tan(20°+40°)[1-tan20°tan40°]+
3
tan20°•tan40°
=
3
[1-tan20°tan40°]+
3
tan20°•tan40°
=
3
-
3
tan20°•tan40°+
3
tan20°•tan40°
=
3

故選A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

tan20°tan(-50°)-1
tan20°-tan50°
=(  )
A、-
3
B、
3
C、-
3
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1;
③tan13°tan35°+tan35°tan42°+tan42°tan13°=1.
一般地,若tanα,tanβ,tanγ都有意義,你從這三個恒等式中猜想得到的一個結(jié)論為
當α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

14、觀察下列幾個三角恒等式:
①tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
②tan13°tan35°+tan35°tan42°+tan42°tan13°=1;
③tan5°tan100°+tan100°tan(-15°)+tan(-15°)tan5°=1
④tan(-160)°tan(-22)°+tan(-22)°tan272°+tan272°tan(-160)°=1
一般地,若tanα,tanβ,tanγ都有意義,你從這四個恒等式中猜想得到的一個結(jié)論為
當α+β+γ=90°時,tanαtanβ+tanβtanγ+tanγtanα=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值:64
1
3
-(-
2
3
)0+
3125
+lg2+lg50+21+log23
;
(2)求值:
tan80°-tan20°+tan(-60°)
tan80°tan20°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)求值:64
1
3
-(-
2
3
)0+
3125
+lg2+lg50+21+log23

(2)求值:
tan80°-tan20°+tan(-60°)
tan80°tan20°

查看答案和解析>>

同步練習冊答案