已知點P(4, 4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

(1)。
(2)

解析試題分析:(1)代入點A(3,1)得m=1或5,得m=1  2分
設PF斜率為k,
   5分

  7分
列方程組得:解得:
所求橢圓方程為  10分
(2)設點Q  12分
  16分
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質,直線與橢圓的位置關系,平面向量的坐標運算,三角函數(shù)輔助角公式。
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質,a,b,c,e的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理,簡化解題過程。通過向量的坐標運算,得到三角函數(shù)式,應用輔助角公式“化一”后,確定數(shù)量積的范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

定義:設分別為曲線上的點,把兩點距離的最小值稱為曲線的距離.
(1)求曲線到直線的距離;
(2)已知曲線到直線的距離為,求實數(shù)的值;
(3)求圓到曲線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標原點),求的值;
(Ⅲ) 設點關于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:圓過橢圓的兩焦點,與橢圓有且僅有兩個公共點:直線與圓相切 ,與橢圓相交于A,B兩點記 
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,上、下焦點分別為、,
向量.直線與橢圓交于兩點,線段中點為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是(0,),(0,),又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標為4,
(1)求拋物線的方程;
(2)設點是拋物線上的兩點,的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點,求弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓
(Ⅰ)設橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(1)中的橢圓與直線相交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓的右焦點為,右準線為,離心率為,點在橢圓上,以為圓心,為半徑的圓與的兩個公共點是

(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點在同一條直線上,且原點到直線的距離為,求橢圓方程.

查看答案和解析>>

同步練習冊答案