(2010•上海模擬)若數(shù)列{an}的通項(xiàng)an=
C
n
6
(-
1
2
)
n
,Sn為數(shù)列{an}的前n項(xiàng)和,則S6=
-
63
64
-
63
64
分析:根據(jù)數(shù)列的通項(xiàng)公式表示出數(shù)列的前6項(xiàng)和,然后根據(jù)二項(xiàng)式定理進(jìn)行求解即可求出所求.
解答:解:∵an=
C
n
6
(-
1
2
)
n
,
∴S6=
C
1
6
(-
1
2
)
1
+
C
2
6
(-
1
2
)
2
+
C
3
6
(-
1
2
)
3
+
C
4
6
(-
1
2
)
4
+
C
5
6
(-
1
2
)
5
+
C
6
6
(-
1
2
)
6

=(1-
1
2
6-1
=-
63
64

故答案為:-
63
64
點(diǎn)評:本題主要考查了數(shù)列的求和,以及二項(xiàng)式定理的應(yīng)用,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)若等差數(shù)列{an}中,
lim
n→∞
n(an+n)
Sn+n
=1
,則公差d=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)一個(gè)正三棱柱和它的三視圖如圖所示,則這個(gè)正三棱柱的表面積為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)以下有四個(gè)命題:
①一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>O(k∈N),則對于任意自然數(shù)n>k,都有an>0;
②一個(gè)等比數(shù)列{an}中,若存在ak<0,ak+1<O(k∈N),則對于任意n∈N,都有an<0;
③一個(gè)等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對于任意n∈N,都有an<O;
④一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對于任意n∈N,都有an.a(chǎn)n+1<0;
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)已知復(fù)數(shù):z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),記z1z2的實(shí)部為f(x),若函數(shù)f(x)是關(guān)于x的偶函數(shù).
(1)求k的值;
(2)求函數(shù)y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)設(shè)向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,滿足|
s
|+|
t
 |=2
2
,已知兩定點(diǎn)A(1,0),B(-1,0),動點(diǎn)P(x,y),
(1)求動點(diǎn)P(x,y)的軌跡C的方程;
(2)已知直線m:y=x+t交軌跡C于兩點(diǎn)M,N,(A,B在直線MN兩側(cè)),求四邊形MANB的面積的最大值.
(3)過原點(diǎn)O作直線l與直線x=2交于D點(diǎn),過點(diǎn)A作OD的垂線與以O(shè)D為直徑的圓交于點(diǎn)G,H(不妨設(shè)點(diǎn)G在直線OD上方),求證:線段OG的長為定值.

查看答案和解析>>

同步練習(xí)冊答案