已知
lim
n→∞
(
an-1
n
+
2
3n
)=1
,則a=
1
1
分析:先將所求極限化簡,再利用
lim
n→∞
1
n
= 0
,即可求得.
解答:解:由題意,
lim
n→∞
(
an-1
n
+
2
3n
)=
lim
n→∞
(a-
1
3n
)=a=1

∴a=1
故答案為:1.
點評:本題的考點是數(shù)列的極限,關(guān)鍵是利用
lim
n→∞
1
n
= 0
,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,
1
2
,
1
4
,…,
1
2n-1
},稱集合B={m,n,p}
(其中m,n,p∈A)為集合A的一個三元子集,設(shè)A的所有三元子集的元素之和是Sn,則
lim
n→∞
Sn
n2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的前n項和為Sn,滿足a1=1,當(dāng)n∈N+時,Sn=an-n-1.
(1)求a2,a3,a4;
(2)猜想an,并用數(shù)學(xué)歸納法證明你的猜想;
(3)已知
lim
n→∞
an
an+1+(a+1)n
=
1
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
n→∞
3n
3n+1+an
=
1
3
,則a的取值范圍為
(-3,3)
(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
n→∞
an2+cn
bn2+c
=2
lim
n→∞
bn+c
cn+a
=3
,則
lim
n→∞
an2+bn+c
cn2+an+b
=( 。
A、
1
6
B、
2
3
C、
3
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
n→∞
(
n2+1
n+1
-an+b)=0
,則點M(a,b)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案