(2012•懷柔區(qū)二模)對(duì)于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對(duì)于任意n∈N*都成立,我們稱數(shù)列{cn}是“T數(shù)列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“T數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù)p,q,若不是,請(qǐng)說明理由;
(Ⅱ)證明:若數(shù)列{an}是“T數(shù)列”,則數(shù)列{an+an+1}也是“T數(shù)列”;
(Ⅲ)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2013項(xiàng)的和.
分析:(I)根據(jù)“T數(shù)列”的定義加以驗(yàn)證,可得{an}是“T數(shù)列”,對(duì)應(yīng)的實(shí)常數(shù)分別為1和2;數(shù)列{bn}也是“T數(shù)列”,對(duì)應(yīng)的實(shí)常數(shù)分別為2和0;
(II)若數(shù)列{an}是“T數(shù)列”,則存在實(shí)常數(shù)p、q,滿足an+1=pan+q、an+2=pan+1+q對(duì)于任意n∈N*都成立,兩式對(duì)應(yīng)相加即可證出數(shù)列{an+an+1}也是“T數(shù)列”,對(duì)應(yīng)的實(shí)常數(shù)分別為p、2q;
(III)根據(jù)等式an+an+1=3t•2n(n∈N*),分別取n=2、4、…、2012,得到1006個(gè)等式.而S2013=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)+(a2012+a2013),將a1=2和前面1006個(gè)等式代入,結(jié)合等比數(shù)列求和公式即可算出數(shù)列{an}前2013項(xiàng)的和的表達(dá)式.
解答:解:(Ⅰ)因?yàn)閍n=2n,則有an+1=2n+2=1×an+2(n∈N*),
所以數(shù)列{an}是“T數(shù)列”,對(duì)應(yīng)的實(shí)常數(shù)分別為1和2.
因?yàn)閎n=3•2n,則有bn+1=3•2n+1=2×3•2n+1=2bn (n∈N*),
所以數(shù)列{bn}是“T數(shù)列”,對(duì)應(yīng)的實(shí)常數(shù)分別為2和0---(4分)
(Ⅱ)若數(shù)列{an}是“T數(shù)列”,則存在實(shí)常數(shù)p、q,
使得an+1=pan+q對(duì)于任意n∈N*都成立,且有an+2=pan+1+q對(duì)于任意n∈N*都成立,
因此(an+1+an+2)=p(an+an+1)+2q對(duì)于任意n∈N*都成立,故數(shù)列{an+an+1}也是“T數(shù)列”.
對(duì)應(yīng)的實(shí)常數(shù)分別為p、2q.---------------------(8分)
(Ⅲ)因?yàn)?nbsp;an+an+1=3t•2n(n∈N*),
則有a2+a3=3t•22,a4+a5=3t•23,…,a2010+a2011=3t•22010,a2012+a2013=3t•22012
故數(shù)列{an}的前2013項(xiàng)的和
S2013=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)+(a2012+a2013
=2+3t•22+3t•24+…+3t•22010+3t•22012=2+3t•
4(1-41006)
1-4
=2+t(22014-4).---------(13分)
點(diǎn)評(píng):本題給出“T數(shù)列”,要我們驗(yàn)證兩個(gè)數(shù)列是否為“T數(shù)列”,并根據(jù)題意求數(shù)列{an}的前2013項(xiàng)的和.著重考查了數(shù)列的遞推公式和等比數(shù)列前n項(xiàng)和的公式等知識(shí),考查了轉(zhuǎn)化化歸與函數(shù)方程的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)y=(sinx+cosx)2-1是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個(gè)側(cè)面都是等邊三角形,AC與BD的交點(diǎn)為O,E為側(cè)棱SC上一點(diǎn).
(1)當(dāng)E為側(cè)棱SC的中點(diǎn)時(shí),求證:SA∥平面BDE;
(2)求證:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)函數(shù)y=(sinx+cosx)2-1是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,則實(shí)數(shù)a的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)手表的表面在一平面上,整點(diǎn)1,2,…,12這12個(gè)數(shù)字等間隔地分布在半徑為
2
2
的圓周上,從整點(diǎn)i到整點(diǎn)(i+1)的向量記作
titi+1
,則
t1t2
t2t3
+
t2t3
t3t4
+…+
t12t1
t1t2
=
6
3
-9
6
3
-9

查看答案和解析>>

同步練習(xí)冊(cè)答案