已知P(-1,-1),Q(2,26)是曲線y=4x2+5x上的兩點,求與直線PQ平行的曲線y=4x2+5x上切線方程.
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應(yīng)用
分析:求出直線PQ的斜率,利用導數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:∵P(-1,-1),Q(2,26),
∴直線PQ的斜率k=
-1-26
-1-2
=
27
3
=9
,
則與直線PQ平行的切線斜率k=9,
由y=f(x)=4x2+5x,
得f′(x)=8x+5,
由f′(x)=8x+5=9,即8x=4,解得x=
1
2
,
即切點的橫坐標x=
1
2
,則對應(yīng)的縱坐標y=f(
1
2
)=4×(
1
2
2+5×
1
2
=1+
5
2
=
7
2
,
即切點坐標為(
1
2
7
2
),
則對應(yīng)的切線方程為y-
7
2
=9(x-
1
2
),即y=9x-1.
點評:本題主要考查函數(shù)切線的求解以及直線平行與斜率之間的關(guān)系,利用導數(shù)的幾何意義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若矩陣A有特征值λ1=2,λ2=-1,它們對應(yīng)的特征向量分別為
α1
=
1
0
,
α2
=
0
1

(1)求矩陣A及逆矩陣A-1
(2)若
β
=
1
16
,試求A100
β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x-1)-k(x-1)+1.
(1)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍.
(2)求證:10 (4lge+
lge
2
+
lge
3
+…+
lge
n
)
>(n+1)e 
(1+n)n
nn
(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓
x2
2
+
y2
b2
=1(b>0)的右焦點為F,F(xiàn)(1,0)
(1)求b的值
(2)過點(-2,0)作直線L與橢圓交于A、B兩點,線段AB中點為M,|MF|=
53
3
,求直線L方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知道函數(shù)f(x)=alnx+
1
2
x2+(a+1)x+3
(1)當a=-1時,求函數(shù)f(x)的單調(diào)遞減區(qū)間.
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某農(nóng)場預算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(1)設(shè)買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(2)設(shè)點P(x,y)在(1)中的可行域內(nèi),求t=
y+20
x-10
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和Sn=n2-4n,則|a1|+|a2|+…+|a10|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是一個等差數(shù)列,其前n項和為Sn,且a2=1,S5=-5.
(Ⅰ)求通項公式an;
(Ⅱ)求數(shù)列前n項和Sn,并求出Sn的最大值.
(Ⅲ)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
(1)80.25×4
2
+2 log
2
3
+log (2+
3
)
3
-2)2
(2)已知a+a-1=3,求
a2+a-2-2
a3+a-3-3
的值.

查看答案和解析>>

同步練習冊答案