已知數(shù)集A={a2,a+1,-3}與數(shù)集B={a-3,2a-1,a2+1},若A∩B={-3},求A∪B.

解:A∩B={-3},

∴-3∈B.

∵a2+1>0,

∴集合B中等于-3的元素只有a-3或2a-1兩種情形.

(1)當a-3=-3,即a=0時,A={0,1,-3},B={-3,-1,1}.這時A∩B={-3,1},與已知A∩B={-3}矛盾,故舍去a=0;

(2)當2a-1=-3,即a=-1時,A={1,0,-3},B={-4,-3,2},符合要求.

因此A∪B={-4,-3,0,1,2}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質P:對任意的i,j(1≤i≤j≤n),aiaj
ajai
兩數(shù)中至少有一個屬于A.
(1)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質P,并說明理由;
(2)求a1的值;當n=3時,數(shù)列a1,a2,a3是否成等比數(shù)列,試說明理由;
(3)由(2)及通過對A的探究,試寫出關于數(shù)列a1,a2,…,an的一個真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)集A={a1,a2,a3,…,an},記和ai+aj(1≤i<j≤n)中所有不同值的個數(shù)為M(A).如當A={1,2,3,4}時,由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.若A=1,2,3,…,n,則M(A)=
2n-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)集A={a1,a2,…,an},其中0≤a1<a2<…<an,且n≥3,若對?i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個屬于A,則稱數(shù)集A具有性質P.
(Ⅰ)分別判斷數(shù)集{0,1,3}與數(shù)集{0,2,4,6}是否具有性質P,說明理由;
(Ⅱ)已知數(shù)集A={a1,a2…a8}具有性質P,判斷數(shù)列a1,a2…a8是否為等差數(shù)列,若是等差數(shù)列,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)集A={a1,a2,…,an}(1=a1<a2<…<an,n≥2)具有性質P:對任意的k(2≤k≤n),?i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質P,并說明理由;
(Ⅱ)求證:an≤2a1+a2+…+an-1(n≥2);
(Ⅲ)若an=72,求數(shù)集A中所有元素的和的最小值.

查看答案和解析>>

同步練習冊答案