設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),將y=f(x)和y=f′(x)的圖象畫(huà)在同一個(gè)直角坐標(biāo)系中,不可能正確的是( )
A.
B.
C.
D.
【答案】分析:本題可以考慮排除法,容易看出選項(xiàng)D不正確,因?yàn)镈的圖象,在整個(gè)定義域內(nèi),不具有單調(diào)性,但y=f(x)和y=f′(x)在整個(gè)定義域內(nèi)具有完全相同的走勢(shì),不具有這樣的函數(shù).
解答:解析:檢驗(yàn)易知A、B、C均適合,不存在選項(xiàng)D的圖象所對(duì)應(yīng)的函數(shù),在整個(gè)定義域內(nèi),不具有單調(diào)性,但y=f(x)和y=f′(x)在整個(gè)定義域內(nèi)具有完全相同的走勢(shì),不具有這樣的函數(shù),故選D.
點(diǎn)評(píng):考查函數(shù)的單調(diào)性問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對(duì)稱.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市臨海市杜橋中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年山東省棗莊市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對(duì)稱.
其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對(duì)任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案