已知實數(shù)x,y滿足
x+y-3≥0
x-y+1≥0
x≤2

(1)若z=2x+y,求z的最小值;
(2)若z=
y
x
,求z的最大值.
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:(1)作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,進行平移即可得到結(jié)論.
(2)根據(jù)z的幾何意義即可得到結(jié)論.
解答: 解:(1)作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當直線y=-2x+z經(jīng)過點A,
直線y=-2x+z的截距最小,此時z最小,
x+y-3=0
x-y+1=0
,解得
x=1
y=2
,
即A(1,2),此時z=2+2=4.
(2)z的幾何意義為區(qū)域內(nèi)的點與原點連線的斜率,由圖象可得OA的斜率最大,
此時z=
2
1
=2
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

市場營銷人員對過去幾年某商品的價格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價格每上漲x%(x>0),銷售量就減少kx%(其中k為正常數(shù)).目前,該商品定價a元,統(tǒng)計其銷售數(shù)量為b個.
(1)當k=
1
2
時,該商品的價格上漲多少,就能使銷售的總金額達到最大?
(2)在適當?shù)臐q價過程中,求使銷售總金額不斷增加時的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(a,b)是區(qū)域
x+y-4≤0
x>0
y>0
內(nèi)的隨機點,函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)是增函數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x,y滿足約束條件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(  )
A、
1
2
或-1
B、1或-
1
2
C、2或1
D、2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x-y≥-1
x+y≤4
y≥2
,則函數(shù)z=2x+4y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|x|+x2(e為自然對數(shù)的底數(shù)),且f(3a-2)>f(a-1),則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷正確的是( 。
A、1.50.3>0.80.3
B、1.52.5>1.53
C、0.83<0.84
D、(
4
5
)-
1
3
<(
5
4
)0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三個非零且互不相等的實數(shù)a,b,c滿足a+c=2b,則稱a,b,c是等差的;若滿足
1
a
+
1
b
=
2
c
則稱a,b,c是調(diào)和的;若集合P中元素a,b,c既是等差的,又是調(diào)和的,則稱集合P為“和諧集”.若集合M={x|x2≤2014,x∈Z},集合p={a,b,c}⊆M,則“和諧集”P的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且
3
asinB-bcosA=0.
(1)求角A的大;
(2)若a=1,b=
3
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案