(n>r≥1,n,r∈Z)恒等于

[  ]

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1
;
(Ⅱ)當(dāng)整數(shù)n≥3時,求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時,證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+m
x
)
n
(m∈R+)
展開式的二項式系數(shù)之和為256,展開式中含x項的系數(shù)為112.
(Ⅰ)求m、n的值;
(Ⅱ)求(1+m
x
)
n
(1-
3x
)
6
展開式中含x2項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)An為數(shù)列{an}的前n項和,An=an1)(nN*),數(shù)列{bn}的通項公式為bn=4n+3nN.

)求數(shù)列{an}的通項公式;

)若da1,a2a3,,an,b1,b2,b3,,bn},則稱d為數(shù)列{an}與{bn}的公共項,將數(shù)列{an}{bn}的公共項,按它們在原數(shù)列中的先后順序排成一個新的數(shù)列{dn},證明數(shù)列{dn}的通項公式為dn=32n+1nN*);

)設(shè)數(shù)列{dn}中第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和,Dn為數(shù)列{dn}的前n項和,Tn=Br+Dn,求.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)An為數(shù)列{an}的前n項和,An=an1)(nN*),數(shù)列{bn}的通項公式為bn=4n+3nN.

)求數(shù)列{an}的通項公式;

)若da1,a2a3,,an,b1,b2b3,bn,},則稱d為數(shù)列{an}與{bn}的公共項,將數(shù)列{an}{bn}的公共項,按它們在原數(shù)列中的先后順序排成一個新的數(shù)列{dn},證明數(shù)列{dn}的通項公式為dn=32n+1nN*);

)設(shè)數(shù)列{dn}中第n項是數(shù)列{bn}中的第r項,Br為數(shù)列{bn}的前r項的和,Dn為數(shù)列{dn}的前n項和,Tn=Br+Dn,求.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C2n
x+3
C3n
x2+4
C4n
x3+…+n
Cnn
xn-1

(Ⅱ)當(dāng)整數(shù)n≥3時,求
C1n
-2
C2n
+3
C3n
-…+(-1)n-1n
Cnn
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時,證明:2
C2n
-3•2
C3n
+4•3
C4n
+…+(-1)n-2n(n-1)
Cnn
=0

查看答案和解析>>

同步練習(xí)冊答案