設(shè),已知,求

答案:略
解析:

解法1:設(shè),由題設(shè)知,,

又由,可得2ac2bd=0

,

解法2:∵,

∴將已知數(shù)值代入,可得,∴

解法3:作出對(duì)應(yīng)的向量,使,

,又不共線,若共線,則0與題設(shè)矛盾.

∴平行四邊形為菱形.又,

,即為正方形,故


提示:

解析:若能將中的a、b求出,則問(wèn)題可解決,或條件中出現(xiàn),可聯(lián)想到復(fù)數(shù)加()法的幾何意義,運(yùn)用數(shù)形結(jié)合解答.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=(k-4)x2+kx(k∈R),對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;數(shù)列{an}滿(mǎn)足an+1=f(an).
(1)求函數(shù)f(x)的解析式和值域;
(2)試寫(xiě)出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說(shuō)明理由;
(3)已知,求:log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

已知集合是滿(mǎn)足下列性質(zhì)的函數(shù)的全體, 存在非零常數(shù), 對(duì)任意, 有成立.

(1) 函數(shù)是否屬于集合?說(shuō)明理由;

(2) 設(shè), 且, 已知當(dāng)時(shí), , 求當(dāng)時(shí), 的解析式.

(3)若函數(shù),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分16分,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分6分)

設(shè)等比數(shù)列的前項(xiàng)和為,已知.

(1)求數(shù)列的通項(xiàng)公式;(2)在之間插入個(gè)1,構(gòu)成如下的新數(shù)列:,求這個(gè)數(shù)列的前項(xiàng)的和;、(3)在之間插入個(gè)數(shù),使這個(gè)數(shù)組成公差為的等差數(shù)列(如:在之間插入1個(gè)數(shù)構(gòu)成第一個(gè)等差數(shù)列,其公差為;在之間插入2個(gè)數(shù)構(gòu)成第二個(gè)等差數(shù)列,其公差為,…以此類(lèi)推),設(shè)第個(gè)等差數(shù)列的和是. 是否存在一個(gè)關(guān)于的多項(xiàng)式,使得對(duì)任意恒成立?若存在,求出這個(gè)多項(xiàng)式;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省2009-2010學(xué)年高二第四次考試(數(shù)學(xué))試題 題型:解答題

中,為它的三個(gè)內(nèi)角,設(shè)向量的夾角為

(Ⅰ)求角的大小; (Ⅱ) 已知,求的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案