2.將4名學(xué)生分別安排甲、乙、丙三個地方參加實(shí)踐活動,每個地方至少安排一名學(xué)生,則不同的安排方案共有( 。
A.12B.18C.24D.36

分析 根據(jù)混合元素的排列問題,把其中的某幾個元素組合成一個元素,再進(jìn)行全排列,問題得以解決

解答 解:先從4名學(xué)生種選擇兩名組成一個復(fù)合元素,然后再將3個元素(包含復(fù)合元素)安排到甲、乙,丙三地,不同的安排方案共有C42A33=36種.
故選:D.

點(diǎn)評 本題主要考查了排列組合的中混合元素排列問題,關(guān)鍵組合成一個新復(fù)合元素,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有四分之一圓形的紙板(如圖),∠AOB=90°,圓半徑為1,要裁剪成四邊形OAPB,且滿足AP∥OB,∠OAB=30°,∠POA=θ,記此四邊形OAPB的面積為f(θ),求f(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程($\frac{1}{3}$)x-x=0的解有( 。
A.0個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了考察某種藥物治療效果,進(jìn)行動物試驗(yàn),得到如下數(shù)據(jù):
患病未患病總計(jì)
服用藥10b50
未服藥cd50
總計(jì)3070100
(1)求出表格中b,c,d的值;
(2)是否有95%的把握認(rèn)為該藥物有效.
附:
i:${k^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({a+d})({b+c})({b+d})}}$
ii:
P(k2≥k)0.150.050.0250.005
k2.0723.8415.0247.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=loga(8-ax)滿足:對任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,則實(shí)數(shù)a的取值范圍是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.f(x)=x2-2x+alnx.
(Ⅰ)若a=2,求f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某射擊手射擊一次命中的概率為0.8,連續(xù)兩次均射中的概率是0.5,已知某次射中,則隨后一次射中的概率是( 。
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
(1)求a3的值;
(2)證明:數(shù)列{an-an-1}(n≥2)是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當(dāng)BC=CD=DE=1時(shí),求二面角A-BE-D的余弦值;
(Ⅳ)在棱AB上是否存在點(diǎn)P滿足EP∥平面BDC;
(Ⅴ)設(shè)$\frac{CD}{CE}$=k,是否存在k滿足平面ABE⊥平面CBE?若存在求出k值,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案