如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=AD.
(1)求證:EF∥平面PAD;
(2)求三棱錐C-PBD的體積.
【答案】分析:(1)連接AC,則F是AC的中點,E為PC的中點,要證EF∥平面PAD,只需證明EF∥PA即可;
(2)求三棱錐C-PBD的體積,轉(zhuǎn)化為P-BCD的體積,求出底面面積和高,即可求出體積.
解答:解:(1)證明:連接AC,則F是AC的中點,E為PC的中點
故在△CPA中,EF∥PA,(3分)
且PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD(6分)
(2)取AD的中點M,連接PM,
∵PA=PD,
∴PM⊥AD(8分)
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PM⊥平面ABCD,(10分)
(14分)
點評:本題考查直線和平面平行的判定,棱錐的體積,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案