已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù),若a=f(log47),b=f(log 
1
2
3),c=f(0.20.4)則a、b、c的大小關(guān)系是(  )
A、c<b<a
B、b<c<a
C、c<a<b
D、a<b<c
分析:根據(jù)對(duì)數(shù)的運(yùn)算,結(jié)合函數(shù)單調(diào)性和奇偶性的關(guān)系分別進(jìn)行判斷即可.
解答:解:∵f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù),
∴在[0,+∞)上為 減函數(shù),
則f(log 
1
2
3)=f(log23),
∵log23=log49>log47>1,0<0.20.4<1,
∴l(xiāng)og23>log47>0.20.4>0,
∴f(log23)<f(log47)<f(0.20.4),
即b<a<c.
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性和奇偶性的應(yīng)用,根據(jù)對(duì)數(shù)的運(yùn)算法則計(jì)算對(duì)數(shù)的大小是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案