分析 由根式內(nèi)部的對數(shù)式大于等于0,對數(shù)式的真數(shù)大于0列出不等式組,然后運用對數(shù)函數(shù)的單調(diào)性去掉對數(shù)符號求解關(guān)于x的一次不等式即可得答案.
解答 解:由$\left\{\begin{array}{l}{3x-8>0}\\{lo{g}_{\frac{1}{3}}(3x-8)≥0}\end{array}\right.$,
解得$\frac{8}{3}<x≤3$.
∴函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-8)}$的定義域為:($\frac{8}{3}$,3].
故答案為:($\frac{8}{3}$,3].
點評 本題考查了函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,解答此題的關(guān)鍵是熟練對數(shù)函數(shù)的單調(diào)性,解答此題時學生易忽略真數(shù)大于0而導(dǎo)致解題出錯,此題是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當-2<a<2時,函數(shù)f(x)無極值 | B. | 當a>2時,f(x)的極小值小于0 | ||
C. | 當a=2時,x=1是f(x)的一個極值點 | D. | ?a∈R,f(x)必有零點 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等于$\frac{{\sqrt{3}}}{2}$ | B. | 等于$-\frac{{\sqrt{3}}}{2}$ | C. | 等于$±\frac{{\sqrt{3}}}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com