已知|
a
|=3,|
b
|=2,
a
b
的夾角為
π
3
,是否存在常數(shù)k,
c
=2
a
-k
b
,
d
=k
a
-
b
,使
c
d
?若存在,求出k;若不存在,說(shuō)明理由.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:∵|
a
|=3,|
b
|=2,
a
b
的夾角為
π
3
,∴
a
b
=|
a
| |
b
|cos
π
3
=3×2×
1
2
=3.
假設(shè)存在常數(shù)k,
c
=2
a
-k
b
,
d
=k
a
-
b
,使
c
d

c
d
=(2
a
-k
b
)•(k
a
-
b
)
=0,
化為2k
a
2
+k
b
2
-(2+k2)
a
b
=0,
∴2k×32+k×22-(2+k2)×3=0,化為3k2-22k+6=0,
解得k=
22±2
103
6
=
11±
103
3

故存在k=
11±
103
3
滿足
c
d
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)量積定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:|1-
x-1
3
|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率e=
1
3
,若過橢圓左焦點(diǎn)且垂直于x的直線被橢圓截得的弦長(zhǎng)為8,試求此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4

(1)若
m
n
=1,求cos(
3
+x)的值;
(2)記f(x)=
m
n
,在△ABC中,角A、B、C的對(duì)邊是a、b、c,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)Q到點(diǎn)F(1,0)與到直線x=4的距離之比為
1
2

(1)求點(diǎn)Q的軌跡方程E;
(2)若點(diǎn)A,B分別是軌跡E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)M是直線l上不同于點(diǎn)B的任意一點(diǎn),直線AM交軌跡E于點(diǎn)P.
(ⅰ)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值;
(ⅱ)設(shè)過點(diǎn)M垂直于PB的直線為m.求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)
1
1+
1
x
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=log2(x2+2x+5)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一長(zhǎng)度為100米的防洪提的斜坡,它的傾斜角為45°,現(xiàn)在要是堤高不變,坡面傾斜角改為30°,則坡底要伸長(zhǎng)
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為四邊形ABCD所在平面外一點(diǎn),且向量
OA
,
OB
,
OC
,
OD
滿足
OA
+
OC
=
OB
+
OD
,則四邊形的形狀為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案