• <menuitem id="cudcd"></menuitem>
  • 已知二次函數(shù)f(x)=x2-mx+2在(-∞,1]上遞減,在[1,+∞)上遞增,則m=________.

    2
    分析:根據(jù)函數(shù)的單調(diào)性可知二次函數(shù)的對(duì)稱軸,結(jié)合二次函數(shù)的對(duì)稱性建立等量關(guān)系,解之即可.
    解答:∵二次函數(shù)f(x)=x2-mx+2在(-∞,1]上遞減,在[1,+∞)上遞增,
    ∴二次函數(shù)f(x)=x2-mx+2的對(duì)稱軸為x=1=
    解得m=2
    故答案為2
    點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性的應(yīng)用,以及二次函數(shù)的有關(guān)性質(zhì),屬于基礎(chǔ)題.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
    (I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
    (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
    (Ⅰ)求f(x)的表達(dá)式;
    (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知二次函數(shù)f(x)=x2-16x+q+3.
    (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
    (2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
    f(x)x-1

    (1)求a的值;
    (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
    (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
    (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案