已知冪函數(shù)y=f(x)的圖象過點(
1
2
,
2
2
)
,則f(2)=
 
考點:冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應用
分析:利用冪函數(shù)的定義設(shè)冪函數(shù)f(x)=xα,再將點的坐標代入,即可求出.
解答: 解:設(shè)冪函數(shù)f(x)=xα
∵冪函數(shù)y=f(x)的圖象過點(
1
2
,
2
2
)
,
2
2
=(
1
2
α,解得α=
1
2

∴f(x)=x 
1
2
.則f(2)=
2

故答案為:
2
點評:本題主要考查了冪函數(shù)的概念、解析式、定義域、值域.熟練掌握冪函數(shù)的定義是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解方程(x+1)2-(x-2)(x+2)=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求O點到面ABC的距離;
(2)求二面角E-AB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ln:y=x-
2n
與圓Cn:x2+y2=2an+n+2交于不同的兩點An、Bn,n∈N*.數(shù)列{an}滿足:a1=1,an+1=
1
4
|AnBn|2
(1)求數(shù)列{an}的通項公式;
(2)若bn=
2n-1 (n為奇數(shù))
an (n為偶數(shù))
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N+),設(shè)bn=an+1-an
(1)求數(shù)列{bn}、{an}的通項公式;
(2)記{an}的前n項和為Sn,求使得Sn>21-2n成立的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均是正數(shù),其前n項和為Sn,且滿足(p-1)Sn=p2-an
其中P為正常數(shù),且P≠1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
2-logpan
(n∈N*),求數(shù)列{bnbn+1}的前n項和Tn;
(3)判斷是否存在正整數(shù)M,使得n>M時,a1a4a7…a3n-2>a78恒成立?若存在,求出相應的M的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=mx2-2x+1有且僅有一個正實數(shù)的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個口袋中裝有12個大小相同的黑球、白球和紅球.已知從袋中任意摸出2個球,至少得到一個黑球的概率是
5
11
.求:
(1)袋中黑球的個數(shù);
(2)從袋中任意摸出3個球,至少得到2個黑球的概率.

查看答案和解析>>

同步練習冊答案