已知正數(shù)數(shù)列{an}對任意p,q∈N+,都有ap+q=ap•aq若a2=4,則a6=
 
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由題意直接在數(shù)列遞推式中取p=q=2求得a4的值,再取p=2、q=4可得a6
解答: 解:∵正數(shù)數(shù)列{an}對任意p,q∈N+,都有ap+q=ap•aq
取p=q=2得:a4=a22,
又a2=4,
a4=42=16,
則a6=a4•a2=16×4=64.
故答案為:64.
點(diǎn)評:本題考查數(shù)列遞推式,訓(xùn)練了特值化思想方法,是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
3
+i
(1-
3
i)2
,
.
z
是z共軛復(fù)數(shù),求z•
.
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,A,B,C分別為a,b,c三條邊的對角,如果b=2a,B=A+60°,那么A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如下:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
且回歸方程是
y
=1.23x+
a
,則
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-sin(2x+
π
3
)的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<2,則函數(shù)y=
x(4-2x)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列5個(gè)函數(shù):(1)y=2x;(2)y=log
1
3
x;(3)y=log2x;(4)y=x2;(5)y=ex.當(dāng)0<x1<x2<1時(shí),使f(
x1+x2
2
)>
f(x1)+f(x2)
2
恒成立的函數(shù)序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

投擲兩個(gè)骰子,至少有一個(gè)4點(diǎn)或5點(diǎn)出現(xiàn)時(shí),就說這次試驗(yàn)成功,則在10次試驗(yàn)中,成功次數(shù)X的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且對任意的正整數(shù)n,滿足2
Sn
=an+1,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

同步練習(xí)冊答案