【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:f(x)>0.
【答案】
(1)解:由2x﹣1≠0得x≠0,∴函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞)
(2)解:∵f(x)= =
∴f(﹣x)= =
∴函數(shù)f(x)為定義域上的偶函數(shù).
(3)證明:當(dāng)x>0時(shí),2x>1
∴2x﹣1>0,
∴ ,
∴ >0
∵f(x)為定義域上的偶函數(shù)
∴當(dāng)x<0時(shí),f(x)>0
∴f(x)>0成立
【解析】(1)由分母不能為零得2x﹣1≠0求解即可.要注意定義域要寫(xiě)成集合或區(qū)間的形式.(2)在(1)的基礎(chǔ)上,只要再判斷f(x)與f(﹣x)的關(guān)系即可,但要注意作適當(dāng)?shù)淖冃危?)在(2)的基礎(chǔ)上要證明對(duì)稱區(qū)間上成立可即可.不妨證明:當(dāng)x>0時(shí),則有2x>1進(jìn)而有2x﹣1>0, 然后得到 >0.再由奇偶性得到對(duì)稱區(qū)間上的結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識(shí),掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零,以及對(duì)函數(shù)的值域的理解,了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镽,如果存在函數(shù)g(x),使得f(x)≥g(x)對(duì)于一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(﹣1,0).
(1)若a=1,b=2.寫(xiě)出函數(shù)f(x)的一個(gè)承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),且f(x)為函數(shù) 的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,則異面直線AB1和BC1所成角的正弦值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓C: + =1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn)A、B,且|AB|= |BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過(guò)點(diǎn)(0,2),且l交橢圓C于P、Q兩點(diǎn),OP⊥OQ.求直線l的方程及橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,2), =(﹣3,4).
(1)求 + 與 ﹣ 的夾角;
(2)若 滿足 ⊥( + ),( + )∥ ,求 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè)c=(0,1),若 + =c,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為( )
A.3+2
B.3+2
C.7
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一點(diǎn).若PA=AC=a,則當(dāng)△MBD的面積為最小值時(shí),直線AC與平面MBD所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x)﹣loga(1﹣x)(a>0且a≠1),
(1)求函數(shù)f(x)的定義域;
(2)若關(guān)于x的方程|f(x)|=2的解集為 ,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com