分析 分離參數(shù)k=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$,求出右側(cè)函數(shù)的單調(diào)性和最值或極限,從而得出k的范圍.
解答 解:∵$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有兩解,
∴k=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$有兩解,
令f(x)=$\frac{7{x}^{2}+\frac{1}{{x}^{2}}-4lnx}{{x}^{2}+1}$,則f′(x)=$\frac{8xlnx+10x-\frac{8}{x}-\frac{2}{{x}^{3}}}{({x}^{2}+1)^{2}}$,
∴當(dāng)0<x<1時(shí),f′(x)<0,當(dāng)x>1時(shí),f′(x)>0,
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x=1時(shí),f(x)取得最小值f(1)=4,
又x→0時(shí),f(x)→+∞,x→+∞時(shí),f(x)→7,
∴4<k<7.
故答案為(4,7).
點(diǎn)評 本題考查了方程根的個(gè)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)最值的計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{7π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60 | B. | -60 | C. | 80 | D. | -80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3≤x<3} | B. | {x|-2<x≤0} | C. | {x|-2<x<0} | D. | {x|x<0或x>2且x≠3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,4} | B. | {2,3} | C. | {2,4} | D. | {0,4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com