設(shè)
a
b
,
c
為單位向量,
a
,
b
的夾角為60°,則(
a
+
b
+
c
)•
c
的最大值為______.
∵單位向量
a
、
b
夾角為60°,
a
b
=
|a|
|b|
cos60°=
1
2
,得|
a
+
b
|=
|a|
2
+2
a
b
+
|b|
2
=
3

c
是單位向量,
∴(
a
+
b
c
=|
a
+
b
|•
|c|
cosθ=
3
cosθ,其中θ是
a
+
b
c
的夾角
∵cosθ∈[-1,1],
∴(
a
+
b
c
的取值范圍是[-
3
,
3
],當(dāng)且僅當(dāng)
a
+
b
c
方向相同時(shí),(
a
+
b
c
的最大值為
3

∵(
a
+
b
+
c
c
=(
a
+
b
c
+
|c|
2=(
a
+
b
c
+1,
∴當(dāng)且僅當(dāng)(
a
+
b
c
取得最大值
3
時(shí),(
a
+
b
+
c
c
的最大值為
3
+1
故答案為:
3
+1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,將函數(shù)f(x)向左平移
π
6
個(gè)單位后得函數(shù)g(x),設(shè)△ABC三個(gè)角A、B、C的對(duì)邊分別為a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
,
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于下列命題:
①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5,A=
π
6
,則△ABC有兩組解;
③設(shè)a=sin
2012π
3
,b=cos
2012π
3
c=tan
2012π
3
,則a>b>c;
④將函數(shù)y=2sin(3x+
π
6
)
圖象向左平移
π
6
個(gè)單位,得到函數(shù)y=2cos(3x+
π
6
)
圖象.
其中正確命題的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知函數(shù)f(x)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f(-
1
2
),b=f(2),c=f(3),則a、b、c的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
),則下列結(jié)論正確的是
①f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱  
②f(x)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱
③把f(x)的圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)的圖象
④f(x)在[0,
π
6
]上為增函數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
bc
b2+c2-a2
=tanA

(1)求角A;
(2)設(shè)函數(shù)f(x)=sinx+2sinAcosx將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的
1
2
,把所得圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案