已知直線l:
x=1+3t
y=-1-4t
(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,曲線C的極坐標方程為ρ=
2
cos(θ+
π
4
)

(1)將曲線C的方程化成直角坐標方程;
(2)求直線l被曲線C截得的弦長.
分析:(1)利用極坐標與直角坐標的化公式即可得出;
(2)利用點到直線的距離公式和弦長公式l=2
r2-d2
即可得出.
解答:解:(1)把ρ=
2
cos(θ+
π
4
)
展開得ρ=
2
(
2
2
cosθ-
2
2
sinθ)
,化為ρ=cosθ-sinθ,
∴ρ2=ρcosθ-ρsinθ,
∴x2+y2=x-y,
即x2+y2-x+y=0,
(2)把
x=1+3t
y=-1-4t
消去t化為普通方程為4x+3y-1=0,
由圓的方程(x-
1
2
)2+(y+
1
2
)2=
1
2
,可得圓心C(
1
2
,-
1
2
)
,半徑r=
2
2

∴圓心到直線的距離d=
|4×
1
2
+3×(-
1
2
)-1|
32+42
=
1
10

∴弦長為═2
r2-d2
=2
1
2
-
1
100
=
7
5
點評:熟練掌握極坐標與直角坐標的化公式、點到直線的距離公式和弦長公式l=2
r2-d2
是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l:
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù))與曲線C的極坐標方程:ρ=
2
cos(θ+
π
4
)

(1)求直線l與曲線C的直角坐標方程(極點與坐標原點重合,極軸與x軸重合)
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:
x=1+t
y=-t
(t為參數(shù))與圓C:
x=2cosθ
y=m+2sinθ
(θ為參數(shù))相交于A,B兩點,m為常數(shù).
(1)當m=0時,求線段AB的長;
(2)當圓C上恰有三點到直線的距離為1時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•洛陽模擬)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的
1
2
倍,縱坐標壓縮為原來的
3
2
倍,得到曲線C2,設(shè)點P是曲線C2上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南京二模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知直線l:
x=1-
5
5
t
y=-1+
2
5
5
t
 
(t為參數(shù))和曲線C:
x=1+t
y=1+t2
(t為參數(shù)).若P是曲線C上任意一點,求點P到直線l的距離的最小值及此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:
x=-1-3t
y=2+4t
與雙曲線(y-2)2-x2=1相交于A、B兩點,P點坐標P(-1,2).求:
(1)|PA|•|PB|的值;  
(2)弦長|AB|; 
(3)弦AB中點M與點P的距離.

查看答案和解析>>

同步練習冊答案