已知數(shù)列{an}的前n項和Sn=n2+2n+5,則a2+a3+a4+a4+a5=
41
41
分析:利用數(shù)列項和數(shù)列和之間的關系進行求值.
解答:解:因為a2+a3+a4+a4+a5=(a2+a3+a4)+(a4+a5)=S4-S1+S5-S3,
因為Sn=n2+2n+5,
所以S4=29,S1=8,S5=40,S3=20.
所以S4-S1+S5-S3=29-8+40-20=41.
故答案為:41.
點評:本題主要考查數(shù)列的項與和之間的關系,要求熟練進行轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案