已知sint+cost=1,設s=cost+isint,求f(s)=1+s+s2+…sn.
分析:本題考查的知識點是復數(shù)的運算,所要用到的數(shù)學思想是分類討論思想,由sint+cost=1,我們易得:cost=0,sint=1或cost=1,sint=0,然后分類討論兩種情況,最后對各種進行總結,即可得到答案.
解答:解:sint+cost=1
∴(sint+cost)
2=1+2sint•cost=1
∴2sint•cost=sin2t=0
則cost=0,sint=1或cost=1,sint=0,
當cost=0,sint=1時,s=cost+isint=i
則f(s)=1+s+s
2+…s
n=
| 1+i,n=4k+1 | i,n=4k+2 | 0,n=4k+3 | 1,n=4(k+1) |
| |
(k∈N+)當cost=1,sint=0時,s=cost+isint=1
則f(s)=1+s+s
2+…s
n=n+1
點評:本題中第一情況主要考查了復數(shù)單位i的運算,要注意:
in= | i,n=4k+1 | -1,n=4k+2 | -i,n=4k+3 | 1,n=4(k+1) |
| |
(k∈N+)