若存在實常數(shù)k和b,使函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為________.


分析:存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導數(shù),根據(jù)導數(shù)求出函數(shù)的最值
解答:令F(x)=h(x)-φ(x)=x2-2elnx(x>0),再令F′(X)=2x-=0,解得 x=
從而函數(shù)h(x)和φ(x)的圖象在x=處有公共點.
因此存在h(x)和φ(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k,則
隔離直線方程為y-e=k(x-),即y=kx-k +e.
由h(x)≥kx-k +e可得 x2-kx+k -e≥0當x∈R恒成立,
則△=k2-4k+4e=≤0,只有k=2 時,等號成立,此時直線方程為:y=2 x-e.
同理證明,由φ(x )≤kx-k +e,可得只有k=2 時,等號成立,此時直線方程為:y=2 x-e.
綜上可得,函數(shù)f(x)和g(x)存在唯一的隔離直線y=2 x-e.
點評:本題以函數(shù)為載體,考查新定義,關(guān)鍵是對新定義的理解,考查函數(shù)的求導,利用導數(shù)求最值,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若存在實常數(shù)k和b,使得函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對數(shù)的底數(shù)).
(1)求F(x)=h(x)-φ(x)的極值;
(2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在實常數(shù)k和b,使函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為
y=2
e
x-e
y=2
e
x-e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)h(x)=x2,m(x)=2elnx(e為自然對數(shù)的底數(shù)),φ(x)=x-2,d(x)=-1.
有下列命題:
①f(x)=h(x)-m(x)在x∈(0,
e
)
遞減;
②h(x)和d(x)存在唯一的“隔離直線”;
③h(x)和φ(x)存在“隔離直線”y=kx+b,且b的最大值為-
1
4
;
④函數(shù)h(x)和m(x)存在唯一的隔離直線y=2
e
x-e

其中真命題的個數(shù)(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省廣州市執(zhí)信中學高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

若存在實常數(shù)k和b,使得函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對數(shù)的底數(shù)).
(1)求F(x)=h(x)-φ(x)的極值;
(2)函數(shù)h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三12月練習數(shù)學試卷 題型:填空題

若存在實常數(shù)k和b,使函數(shù)對其定義域上的任意實數(shù)x恒有:

,則稱直線 的“隔離直線”。

已知,則可推知的“隔離直線”方程為   ▲     

 

查看答案和解析>>

同步練習冊答案