19.已知函數(shù)f(x)=$\left\{\begin{array}{l}3-|x|(x≤3)\\{x^2}-8x+15(x>3)\end{array}$若f(f(m))≥0,則實數(shù)m的取值范圍是(  )
A.[-6,6]B.[-3,3]∪[5,+∞)C.$[{-6,4+\sqrt{6}}]$D.$[{-6,6}]∪[{4+\sqrt{6},+∞})$

分析 令t=f(m),可得f(t)≥0,畫出y=f(x)的圖象,可得f(m)的范圍,討論m的范圍,解m的不等式,即可所求范圍.

解答 解:若f(f(m))≥0,
令t=f(m),可得f(t)≥0,
可得t∈[-3,3]∪[5,+∞),
即f(m)∈[-3,3]∪[5,+∞),
由f(x)=$\left\{\begin{array}{l}3-|x|(x≤3)\\{x^2}-8x+15(x>3)\end{array}$,
可得當(dāng)m≤3時,-3≤3-|m|≤3,
解得-6≤m≤3;
當(dāng)m>3時,m2-8m+15=(m-4)2-1≥-1,
由-3≤m2-8m+15≤3,
解得3<m≤6;
由m2-8m+15≥5,解得m≥4+$\sqrt{6}$(m≤4-$\sqrt{6}$舍去),
綜上可得,m的范圍是[-6,6]∪[4+$\sqrt{6}$,+∞).
故選:D.

點評 本題考查分段函數(shù)的圖象和運(yùn)用,考查數(shù)形結(jié)合的思想方法,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,若f(-1)=0,則不等式xf(x)>0的解集是( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足|z|=1,則|z-(4+3i)|的最大、最小值為( 。
A.5,3B.6,4C.7,5D.6,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知線段AB,CD分別在兩條異面直線上,M,N分別是線段AB,CD的中點,則MN< (AC+BD)(填“>”“<”或“=”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\frac{cos6x}{{2}^{x}-{2}^{-x}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知定義在R上的函數(shù)f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函數(shù),函數(shù)g(x)=$\frac{mx}{2+x}$的定義域為(-2,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{2+x}$在(-2,+∞)上單調(diào)遞減,根據(jù)單調(diào)性的定義求實數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-1,1)上有且僅有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.直線過點P(-3,1),且與x軸,y軸分別交于A,B兩點.
(Ⅰ)若點P恰為線段AB的中點,求直線l的方程;
(Ⅱ)若$\overrightarrow{AP}$=$2\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若定義在[-2015,2016]上的函數(shù)f(x)滿足:對于任意x1,x2∈[-2015,2015]有f(x1+x2)=f(x1)+f(x2)-2014且x>0時,有f(x)>2014,f(x)的最大值、最小值分別為M,N則M+N=( 。
A.2013B.2014C.4026D.4028

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an,則a2015=-5.

查看答案和解析>>

同步練習(xí)冊答案