1.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右支上有一點A,它關(guān)于原點的對稱點為B,點F為雙曲線的右焦點,設(shè)∠ABF=θ,θ∈[$\frac{π}{6}$,$\frac{π}{4}$)且$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,則雙曲線離心率的最小值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{3}+1$

分析 如圖所示,設(shè)雙曲線的左焦點為F′,連接AF′,BF′.則四邊形AFBF′為矩形.因此|AB=|FF′|=2c.而|AF′|-|AF|=2a.|AF|=2csinα,|BF′|=2ccosα.可得e=$\frac{1}{cosθ-sinθ}$=$\frac{1}{\sqrt{2}cos(θ+\frac{π}{4})}$,由θ∈[$\frac{π}{6}$,$\frac{π}{4}$)求出雙曲線離心率的最小值.

解答 解:如圖所示,
設(shè)雙曲線的左焦點為F′,連接AF′,BF′.
則四邊形AFBF′為矩形.
因此|AB=|FF′|=2c.
|AF′|-|AF|=2a.
|AF|=2c•sinθ,|BF|=2c•cosθ.
∴2c•cosθ-2csinθ=2a.
∴e=$\frac{1}{cosθ-sinθ}$=$\frac{1}{\sqrt{2}cos(θ+\frac{π}{4})}$,
∵θ∈[$\frac{π}{6}$,$\frac{π}{4}$),
∴θ+$\frac{π}{4}$∈[$\frac{5π}{12}$,$\frac{π}{2}$),
∴e∈[$\sqrt{3}$+1,+∞).
雙曲線離心率的最小值$\sqrt{3}$+1,
故選D.

點評 本題考查了雙曲線的定義及其性質(zhì)、兩角差的正弦公式、正弦函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求值:
(1)sin795°;         
(2)(tan10°-$\sqrt{3}$)•$\frac{{sin{{80}°}}}{{cos{{40}°}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知奇函數(shù)f(x)在(0,+∞)上單調(diào)遞增,且f(2)=0,則不等式$\frac{f(-x)-f(x)}{2x}$≥0的解集為( 。
A.[-2,0)∪(0,2]B.[-2,0)∪[2,+∞)C.(-∞,2]∪(0,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若“x2-x-6>0”是“x<a”的必要不充分條件,則a的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=2cos(x-$\frac{π}{3}$)($\frac{π}{6}$≤x≤$\frac{2}{3}$π)的最小值是( 。
A.1B.-$\sqrt{3}$C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=cosx(cosx+$\sqrt{3}$sinx).
(Ⅰ)求f(x)的最小值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,S△ABC=$\frac{3\sqrt{3}}{4}$,c2=7,若f(C)=1,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.同時擲兩枚骰子,所得點數(shù)之和為3的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{18}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知扇形的圓心角是α,半徑為R,弧長為l.
(1)若α=60°,R=10cm,求扇形的弧長l;
(2)若扇形的周長為20cm,當(dāng)扇形的圓心角α為多少弧度時,這個扇形的面積最大;
(3)若α=$\frac{π}{3}$,R=2cm,求扇形的弧所在的弓形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AE=$\frac{1}{2}$AD=1,PA=2.
(1)證明:平面PAB⊥平面PBD;
( 2 )求三棱錐E-PDC的體積.

查看答案和解析>>

同步練習(xí)冊答案