6.23000的末兩位數(shù)是(  )
A.46B.56C.66D.76

分析 依次末位兩位數(shù)是:02,04,08,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,04,08,16…若果去掉02,正好20個(gè)一循環(huán).

解答 解:依次末位兩位數(shù)是:02,04,08,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,04,08,16…若果去掉02,正好20個(gè)一循環(huán),
(3000-1)÷20=149…19,由此得到23000的末兩位數(shù)是76.
故選:D

點(diǎn)評(píng) 本題考查了推理與歸納能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=-x3+3x2+9x+m在區(qū)間[-2,2]上的最大值是20,則實(shí)數(shù)m的值等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$定義域?yàn)椋?∞,2);值域?yàn)椋?2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,設(shè)其左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F2的直線l交橢圓于A,B兩點(diǎn),三角形F1AB的周長(zhǎng)為8.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義區(qū)間I=(α,β)的長(zhǎng)度為β-α,已知函數(shù)f(x)=ax2+(a2+1)x,其中a<0,區(qū)間I={x|f(x)>0}.
(Ⅰ)求區(qū)間I的長(zhǎng)度;
(Ⅱ)設(shè)區(qū)間I的長(zhǎng)度函數(shù)為g(a),試判斷函數(shù)g(a)在(-∞,-1]上的單調(diào)性;
(Ⅲ)在上述函數(shù)g(a)中,若a∈(-∞,-1],問(wèn):是否存在實(shí)數(shù)k,使得g(k-sinx-3)≤g(k2-sin2x-4)對(duì)一切x∈R恒成立,若存在,求出k的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-lnx.
(1)求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).則二面角B-DE-C的平面角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的長(zhǎng)軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上的排列規(guī)律,第20行第2個(gè)數(shù)是192.

查看答案和解析>>

同步練習(xí)冊(cè)答案