10.不等式組$\left\{{\begin{array}{l}{x-{x^2}>0}\\{{{log}_x}\frac{1}{3}>\frac{1}{2}}\end{array}}\right.$的解集是(0,$\frac{1}{9}$).

分析 分別求出2個(gè)不等式的解集取交集即可.

解答 解:∵$\left\{{\begin{array}{l}{x-{x^2}>0}\\{{{log}_x}\frac{1}{3}>\frac{1}{2}}\end{array}}\right.$,
∴$\left\{\begin{array}{l}{x(x-1)<0}\\{\frac{lg\frac{1}{3}}{lgx}>\frac{1}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{0<x<1}\\{0<x<\frac{1}{9}}\end{array}\right.$,
故不等式組的解集是(0,$\frac{1}{9}$),
故答案為:(0,$\frac{1}{9}$).

點(diǎn)評(píng) 本題考查了解二次不等式以及對(duì)數(shù)不等式,考查不等式的解法,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在Rt△ABC中,兩直角邊分別為a,b,斜邊為c,則由勾股定理知c2=b2+a2,則在四面體P-ABC中,PA⊥PB,PA⊥PC,PB⊥PC,類(lèi)比勾股定理,類(lèi)似的結(jié)論為( 。
A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2
C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S8-2S4=5,則a9+a10+a11+a12的最小值為( 。
A.10B.15C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.觀察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,則1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)說(shuō)法:
①“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要條件;
②命題“設(shè)a,b∈R,若a+b≠6,則a≠3或b≠3”是一個(gè)假命題;
③命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∈R都有x2+x+1≥0
④一個(gè)命題的否命題為真,則它的逆命題一定為真
其中正確的是( 。
A.①④B.②④C.①③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在四面體ABCD中,AB=CD=4,AD=BD=5,AC=BC=6,點(diǎn)E,F(xiàn),G,H分別在棱AD,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某同學(xué)同時(shí)投擲兩顆骰子,得到點(diǎn)數(shù)分別為a,b,則橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e>$\frac{\sqrt{3}}{2}$的概率是( 。
A.$\frac{1}{18}$B.$\frac{5}{36}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.等比數(shù)列{an}中,a2,a6是方程x2-34x+64=0的兩根,則a4等于(  )
A.8B.-8C.±8D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$y=1-2x-\frac{3}{x-1}(x<1)$的最小值為2$\sqrt{6}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案