(a+x)(1+
x
5的展開式中x2項的系數(shù)是15,則a=
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:把(1+
x
5按照二項式定理展開,即可求得(a+x)(1+
x
5的展開式中x2項的系數(shù),再根據(jù)x2項的系數(shù)是15,求得a的值.
解答: 解:∵(a+x)(1+
x
5 =(a+x)(1+5
x
+10x+10x
x
+5x2+x
5
2
 ),
∴x2項的系數(shù)是 5a+10=15,∴a=1,
故答案為:1.
點評:本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2-8m+15)+(m2-5m+4)i(m∈R).
(1)若復(fù)數(shù)z<0,求實數(shù)m的值;
(2)若復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于第四象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求y=|4-x|,x∈[0,6]與x軸圍成的平面圖形的面積.
(2)求y=sin2x,x∈[0,π]與x軸圍成的平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:|x+
1
x
|≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2x-1,cosx),
b
=(1,2cosx).設(shè)函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期及x∈[0,
π
2
]時的最小值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx-
3
cos(π+x)cosx(x∈R).則f(x)的最大值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+3x-2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標系xoy上的區(qū)域D由不等式組
x+y≥2
x<2
y≤1
給定,若M(x,y)為D上的動點,則
9x2+y2
xy
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,則a0+a1+a2+a3+a4+a5+a6等于
 

查看答案和解析>>

同步練習(xí)冊答案