設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,2)

(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x的取值集合.
分析:(Ⅰ)由向量的數(shù)量積的坐標(biāo)表示可得,f(x)=
a
b
=m(1+sin2x)+cos2x=m+msin2x+cos2x,由f(
π
4
)=2可求m
(Ⅱ)由(Ⅰ)得f(x)=1+sin2x+cos2x=1+
2
sin(2x+
π
4
)
,結(jié)合正弦函數(shù)的性質(zhì)可求
解答:解:(Ⅰ)∵f(x)=
a
b
=m(1+sin2x)+cos2x=m+msin2x+cos2x
由已知f(
π
4
)=m(1+sin
π
2
)+cos
π
2
=2
,
∴2m=2即m=1
(Ⅱ)由(Ⅰ)得f(x)=1+sin2x+cos2x=1+
2
sin(2x+
π
4
)

∴當(dāng)sin(2x+
π
4
)
=-1時(shí),f(x)的最小值為1-
2

此時(shí)2x+
π
4
=-
π
2
+2kπ
即{x|x=kπ-
8
,k∈Z}
點(diǎn)評:本題主要考查了向量的數(shù)量積的坐標(biāo)表示,輔助角公式在三角函數(shù)化簡中的應(yīng)用,正弦函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=A+Bsinx,若B<0時(shí),f(x)的最大值是
3
2
,最小值是-
1
2
,則A=
 
,B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函數(shù)f(x)的最小正周期和在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
6
]
時(shí),f(x)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a+bcosx+csinx的圖象過點(diǎn)(0,1)和點(diǎn)(
π
2
,1)
,當(dāng)x∈[0,
π
2
]
時(shí),|f(x)|<2,則實(shí)數(shù)a的取值范圍是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b與c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),設(shè)函數(shù)f(x)=
a
b
(x∈R)的圖象關(guān)于直線x=
π
3
對稱,其中常數(shù)ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
12
個(gè)單位,得到函數(shù)g(x)的圖象,用五點(diǎn)法作出函數(shù)g(x)在區(qū)間[-
π
2
,
π
2
]的圖象.

查看答案和解析>>

同步練習(xí)冊答案