已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞增,則滿足數(shù)學(xué)公式的x取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:當(dāng)2x-1≥0時(shí),直接根據(jù)函數(shù)的單調(diào)性,得不等式2x-1>;當(dāng)2x-1<0時(shí),根據(jù)函數(shù)為偶函數(shù)的性質(zhì),將原不等式化為,再由函數(shù)單調(diào)性得不等式1-2x.最后將兩種情況的解集取并集,可得原不等式的解集.
解答:根據(jù)函數(shù)在區(qū)間[0,+∞)單調(diào)遞增,得
當(dāng)2x-1≥0,即x時(shí),不等式等價(jià)于2x-1>,解之得x>
而當(dāng)2x-1<0,即x時(shí),由于函數(shù)是偶函數(shù),所以等價(jià)于
再根據(jù)單調(diào)性,得1-2x,解之得x
綜上所述,不等式的解集為{x|x或x>}
故選B
點(diǎn)評(píng):本題給出抽象函數(shù)為偶函數(shù)且在[0,+∞)上為增函數(shù),求關(guān)于x的不等式的解集,著重考查了函數(shù)單調(diào)性的奇偶性等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,π]上單調(diào)遞增,那么下列關(guān)系成立的是( 。
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、已知偶函數(shù)f(x)在(0,+∞)上單調(diào)遞增,則f(-3),f(-1),f(2)的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0則不等式f(2x-1)<f(
1
3
)的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則滿足f(2x-1)<f(x+3)的x的取值范圍是
x>2或x<-
4
3
x>2或x<-
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案