已知函數(shù),.
(1)用定義證明:不論為何實(shí)數(shù)上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.
解: (1) 的定義域?yàn)镽,  任取,
=.
,∴ .
,即.
所以不論為何實(shí)數(shù)總為增函數(shù).   
(2) .     
(3)在區(qū)間上的最小值為.
本題主要考查了函數(shù)的單調(diào)性的定義在證明(判斷)函數(shù)單調(diào)性中的簡單應(yīng)用,奇函數(shù)的性質(zhì)f(0)=0(0在定義域內(nèi)),屬于基礎(chǔ)試題.
(1)任取x1<x2,則f(x1)-f(x2),根據(jù)已知只要判斷出函數(shù)值差的符號(hào)即可
(2)由奇函數(shù)的性質(zhì)有 f(0)=0,代入可求a
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)求的值;
(3)若對(duì)于區(qū)間[3,4]上的每一個(gè)的值,不等式>恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是奇函數(shù),則<0的取值范圍是( )
A.(-1,0)B.(0,1)
C.(-∞,0)D.(-∞, 0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上有定義,對(duì)任意實(shí)數(shù)和任意實(shí)數(shù),都有,若,則函數(shù)的遞減區(qū)間是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234234028558.png" style="vertical-align:middle;" />,且滿足條件:
,②③當(dāng)
1)、求的值
2)、討論函數(shù)的單調(diào)性;
3)、求滿足的x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在(-1,1)上的奇函數(shù)為減函數(shù),且,則的取值范圍
A.B.(
C.(D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是
A.B.
C.,D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),當(dāng)時(shí),恒成立,設(shè),則a,b,c的大小關(guān)系(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)上的最大值為4,最小值為,且函數(shù)上是增函數(shù),則         

查看答案和解析>>

同步練習(xí)冊(cè)答案