已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實(shí)數(shù)的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
(1)1;(2) .
【解析】
試題分析:(1)通過(guò)向量的數(shù)量積給出,利用數(shù)量積定義求出,發(fā)現(xiàn)它是二次函數(shù),利用二次函數(shù)的單調(diào)性可求出;(2)由此,不等式在上恒成立,觀(guān)察這個(gè)不等式,可以用換元法令,變形為在時(shí)恒成立,從而,因此我們只要求出的最小值即可.下面我們要看是什么函數(shù),可以看作為關(guān)于的二次函數(shù),因此問(wèn)題易解.
試題解析:(1)由題得
又開(kāi)口向上,對(duì)稱(chēng)軸為,在區(qū)間單調(diào)遞增,最大值為4,
所以,
(2)由(1)的他,
令,則 以可化為,
即恒成立,
且,當(dāng),即時(shí)最小值為0,
考點(diǎn):(1)二次函數(shù)的單調(diào)性與最值;(2)換元法與二次函數(shù)的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市楊浦區(qū)高三上學(xué)期學(xué)業(yè)質(zhì)量調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實(shí)數(shù)的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市象山中學(xué)(象山港書(shū)院)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱(chēng)軸為.
(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,
S△ABC=,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱(chēng)軸為.
(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com