求下列各函數(shù)的導(dǎo)數(shù).
(1)y=(2x2+3)(3x-1);
(2)y=lnx+
1
x
-
x

(3)y=xcos(2x)
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式分別進(jìn)行求導(dǎo)即可得到結(jié)論.
解答: 解:(1)y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4(3x-1)+3(2x2+3)=18x2-4x+9,
(2)y′=(lnx)′+(
1
x
′-(
x
)′
,即y′=
1
x
-
1
x2
-
1
2
x
,
(3)y′=x′cos2x+x(cos2x)′=cos2x-xsin2x•2=cos2x-2xsin2x.
點(diǎn)評:本題主要考查導(dǎo)數(shù)的計算,要求熟練掌握常見函數(shù)的導(dǎo)數(shù)公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(3x+
π
3
)的圖象,只需將函數(shù)y=sinx的圖象上所有的點(diǎn)( 。
A、向右平移
π
3
個單位,再將所得各點(diǎn)的橫坐標(biāo)縮短為原來的
1
3
倍(縱坐標(biāo)不變)
B、向右平移
π
9
個單位,再將所得各點(diǎn)的橫坐標(biāo)伸長為原來的3倍(縱坐標(biāo)不變)
C、向左平移
π
3
個單位,再將所得各點(diǎn)的橫坐標(biāo)縮短為原來的
1
3
倍(縱坐標(biāo)不變)
D、向左平移
π
9
個單位,再將所得各點(diǎn)的橫坐標(biāo)伸長為原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)若函數(shù)g(x)=f(x)+x2+ax+2有零點(diǎn),求實數(shù)a的范圍;
(2)若f(x)≥k(x+1)(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-3)2=9及圓外一點(diǎn)P(5,-1).
(1)點(diǎn)A是圓C上任意一點(diǎn),求PA的中點(diǎn)Q的軌跡方程;
(2)過P作直線l,若圓C上恰有三點(diǎn)到直線l的距離等于1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組共有n個同學(xué).
(1)若從中任選2人分別上臺做數(shù)學(xué)、物理學(xué)科的學(xué)習(xí)經(jīng)驗介紹,其方法數(shù)至少有20種,求n的取值范圍;
(2)若從中任選2人去聽講座與任選3人去聽講座的方法數(shù)相同,求n的值;
(3)課外輔導(dǎo)時,有數(shù)學(xué)、物理兩個興趣班可供這n個同學(xué)選報,每人必須報而且只能報一個班,如果總的選擇方法數(shù)為m,求證:對任意n≥2總有m>n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A、B、C的對邊分別為a、b、c,2bsinB=(2a-
3
c)sinA+(2c-
3
a)sinC,D是BC邊上的一點(diǎn),AD=2,AB=2
3

(Ⅰ)求B的大。
(Ⅱ)求鈍角△ABD的中線AE的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表并問是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) 月收入低于55百元的人數(shù) 合計
贊成 a= c=
不贊成 b= d=
合計
(Ⅱ)若對月收入在[15,25),[25,35)的被調(diào)查人中各隨機(jī)選取1人進(jìn)行追蹤調(diào)查,求選中的2人中不贊成“樓市限購令”人數(shù)至多1人的概率.
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
 
P(K2≥k) 0.100  0.050  0.025  0.010  0.001
k 2.706  3.841  5.024  6.635  10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右準(zhǔn)線l:x=
9
5
5
,離心率e=
5
3
,A,B是橢圓上的兩動點(diǎn),動點(diǎn)P滿足
OP
=
OA
OB
,(其中λ為常數(shù)).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)λ=1且直線AB與OP斜率均存在時,求|kAB|+|kOP|的最小值;
(3)若G是線段AB的中點(diǎn),且kOA•kOB=kOG•kAB,問是否存在常數(shù)λ和平面內(nèi)兩定點(diǎn)M,N,使得動點(diǎn)P滿足PM+PN=18,若存在,求出λ的值和定點(diǎn)M,N;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,4]上隨機(jī)地取一個數(shù)x,若x滿足|x|≤m的概率為0.5,則m=
 

查看答案和解析>>

同步練習(xí)冊答案