已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n=1,2,3,L),數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項an,bn;
(2)若Tn為數(shù)列{bn}的前n項和,證明:當n≥2時,2Sn>Tn+3n.
解:(1)∵S
n=2a
n-2
∴s
n-1=2a
n-1-2(n≥2)
∵a
n=s
n-s
n-1(n≥2)
∴a
n=2a
n-2a
n-1∴
(n≥2)即數(shù)列{a
n}為等比數(shù)列
∵a
1=s
1=2a
1-2
∴a
1=2
∴a
n=2
n∵點P(b
n,b
n+1)在直線x-y+2=0上
∴b
n+1-b
n=2∵b
1=1∴b
n=2n-1
(2)證明:由已知
,
=2n即證明不等式2
n+2>n
2+3n+4(n≥2)成立
下面用數(shù)學歸納法給出證明:
①當n=2時,2
n+2=16,n
2+3n+4=14,不等式成立.
②假設當n=k時不等式成立,即2
k+2>k
2+3k+4成立,
那么當 n=k+1時2
k+3>2k
2+6k+8.
以下只需證明2k
2+6k+8≥(k+1)
2+3(k+1)+4成立
即只需證明k
2+k≥0成立,因為k≥2時k
2+k≥0成立
所以當n=k+1時不等式2
n+2>n
2+3n+4(n≥2)成立
綜合①②知原不等式成立.
分析:(1)利用a
n=s
n-s
n-1(n≥2)和S
n=2a
n-2可得
(n≥2)即數(shù)列{a
n}為等比數(shù)列再求出a
1利用等比數(shù)列的通項公式寫出a
n即可.由點P(b
n,b
n+1)在直線x-y+2=0上可得b
n+1-b
n=2即數(shù)列{b
n}為等差數(shù)列在求出b
1利用等差數(shù)列的通項公式寫出即可列b
n即可.
(2)由 (1)利用等比等差數(shù)列的前n項和公式求出
,
=2n因此要證當n≥2時,2S
n>T
n+3n即證不等式2
n+2>n
2+3n+4(n≥2)成立,而對此可采用數(shù)學歸納法證明.
點評:本題第一問較簡單主要考查了利用遞推公式S
n=2a
n-2和b
n+1-b
n=2求數(shù)列{a
n},{b
n}的通項公式,在求{a
n}時結(jié)合了a
n=s
n-s
n-1(n≥2)得出{a
n}為等比數(shù)列這一關鍵結(jié)論.第二問在第一問的基礎上利用等比等差數(shù)列的前n項和公式來證明當n≥2時,2S
n>T
n+3n成立而解決這個問題要做到兩點(1)等比等差數(shù)列的前n項和公式要熟記(2)利用數(shù)學歸納法證明關于n的不等式時要分兩步1.當n=n
0時驗證左右兩邊成立2.假設當n=k時不等式成立然后利用假設證明當n=k+1時不等式也成立即可說明當n≥2時,2S
n>T
n+3n成立.但在具體的證明過程中又采用了分析法從而簡化了證明步驟!