設(shè)圓x2+y2=2的切線l與x軸正半軸、y軸正半軸分別交于點A,B,當|AB|取最小值時,切線l的方程為________.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練訓練15練習卷(解析版) 題型:解答題
設(shè)F1,F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練訓練12練習卷(解析版) 題型:選擇題
已知兩條直線a,b與兩個平面α,β,b⊥α,則下列命題中正確的是( ).
①若a∥α,則a⊥b;②若a⊥b,則a∥α;③若b⊥β,則α∥β;④若α⊥β,則b∥β.
A.①③ B.②④ C.①④ D.②③
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練訓練10練習卷(解析版) 題型:填空題
在正項數(shù)列{an}中,a1=2,an+1=2an+3×5n,則數(shù)列{an}的通項公式為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:選擇題
已知直線y=k(x-m)與拋物線y2=2px(p>0)交于A,B兩點,且OA⊥OB,OD⊥AB于點D.若動點D的坐標滿足方程x2+y2-4x=0,則m等于( ).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:解答題
如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點,將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:解答題
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復(fù)習專題提升訓練x4-1練習卷(解析版) 題型:解答題
如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com