已知橢圓經(jīng)過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l在y軸上的截距為m(m≠0),
(1)當(dāng)m=3時(shí),判斷直線l與橢圓的位置關(guān)系(寫出結(jié)論,不需證明);
(2)當(dāng)m=3時(shí),P為橢圓上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最小值;
(3)如圖,當(dāng)l交橢圓于A、B兩個(gè)不同點(diǎn)時(shí),求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形。

解:(1)當(dāng)m=3時(shí),直線l與橢圓相離;
(2)可知直線l的斜率為
設(shè)直線a與直線l平行,且直線a與橢圓相切,
設(shè)直線a的方程為,
聯(lián)立
,
∴直線a的方程為
所求P到直線l的最小距離等于直線l到直線的距離;
(3)由,
,
設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可,
設(shè),



,
,
故直線MA、MB與x軸始終圍成一個(gè)等腰三角形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省唐山市高三上學(xué)期摸底考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過點(diǎn)M(-2,-1),離心率為。過點(diǎn)M作傾斜角

 

互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q。

(I)求橢圓C的方程;

(II)能否為直角?證明你的結(jié)論;

(III)證明:直線PQ的斜率為定值,并求這個(gè)定值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)已知橢圓經(jīng)過點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線ly軸上的截距為mm≠0) 

(1)當(dāng) 時(shí),判斷直線l與橢圓的位置關(guān)系;

(2)當(dāng)時(shí),P為橢圓上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最小值;

(3)如圖,當(dāng)l交橢圓于A、B兩個(gè)不同點(diǎn)時(shí),求證:

直線MA、MB與x軸始終圍成一個(gè)等腰三角形 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式經(jīng)過點(diǎn)M(-2,-1),離心率為數(shù)學(xué)公式.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(I)求橢圓C的方程;
(II)∠PMQ能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式經(jīng)過點(diǎn)M(-2,-1),離心率為數(shù)學(xué)公式.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(I)求橢圓C的方程;
(II)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江西省吉安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓經(jīng)過點(diǎn)M(-2,-1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(I)求橢圓C的方程;
(II)∠PMQ能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案