函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)在上的最大值.
(1)的減區(qū)間為,增區(qū)間為.
(2)時(shí),函數(shù)在上的最大值為.
解析試題分析:(1)首先確定函數(shù)的定義域,求導(dǎo)數(shù),然后利用,可得減區(qū)間;利用,可得增區(qū)間.(2)求函數(shù)最值的常用方法是,求導(dǎo)數(shù),求駐點(diǎn),計(jì)算駐點(diǎn)函數(shù)值、區(qū)間端點(diǎn)函數(shù)值,比較大小,得出最值.
試題解析:(1)時(shí),的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/94/e/1mggj2.png" style="vertical-align:middle;" />
2分
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/2a/7/1mm9o4.png" style="vertical-align:middle;" />,由,則;,則 3分
故的減區(qū)間為,增區(qū)間為 4分
(2)時(shí),的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/94/e/1mggj2.png" style="vertical-align:middle;" />
5分
設(shè),則
,其根判別式,
設(shè)方程的兩個(gè)不等實(shí)根且, 6分
則
,顯然,且,從而 7分
則,單調(diào)遞減 8分
則,單調(diào)遞增 9分
故在上的最大值為的較大者 10分
設(shè),其中
11分
,則
在上是增函數(shù),有 12分
在上是增函數(shù),有, 13分
即
所以時(shí),函數(shù)在上的最大值為 14分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為奇函數(shù),且當(dāng)時(shí),.當(dāng)時(shí),的最大值為,最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
(1)對(duì)于函數(shù),當(dāng)時(shí),,求實(shí)數(shù)的取值集合;
(2)當(dāng)時(shí),的值為負(fù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn),過(guò)線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問(wèn)是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù),且當(dāng)x>0時(shí)恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實(shí)數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),若函數(shù)圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的軌跡恰好是函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)當(dāng)時(shí)總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在點(diǎn)處的切線方程為,且對(duì)任意的,恒成立.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求實(shí)數(shù)的最小值;
(Ⅲ)求證:().
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com