設(shè)集合A={x|x2-(a+1)x+a<0},B={x|
2x+1
x-2
>0}

(1)當(dāng)a=3時,求A∩B;
(2)若A⊆?RB,求a的取值范圍.
(1)∵B={x|
2x+1
x-2
>0}={x|(2x+1)(x-2)>0}
={x|x<-
1
2
,或x>2}
=(-∞,-
1
2
)∪(2,+∞).
當(dāng)a=3時,A={x|x2-4x+3<0}={x|(x-3)(x-1)<0 }={x|1<x<3}=(1,3),
∴A∩B=(2,3).
(2)因B={x|x<-
1
2
,或x>2}
=(-∞,-
1
2
)∪(2,+∞),
∴?RB=[-
1
2
,2]

再由集合A={x|x2-(a+1)x+a<0}={x|(x-1)(x-a)<0},
當(dāng)a>1時,A=(1,a+1),且 A⊆?RB,可得 
a>1
a≤2
,解得1<a≤2.
當(dāng)a=1時,A=∅,顯然滿足  A⊆?RB.
當(dāng)a<1時,A=(a,1),且 A⊆?RB,可得 
a<1
a≥-
1
2
,解得 1>a≥-
1
2

綜上可得2≥a≥-
1
2
,
∴a的取值范圍為[-
1
2
,2]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2=1},B={x|x是不大于3的自然數(shù)},A⊆C,B⊆C,則集合C中元素最少有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+2x-a=0,x∈R},若A是非空集合,則實數(shù)a的取值范圍是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)設(shè)集合A={x|x2>x},集合B={x|x>0},則集合A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2<2x},B={x|log2x>0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+2x-3>0},B={x|x<3},則A∩B=( 。

查看答案和解析>>

同步練習(xí)冊答案